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Task 1: Basic implementation

a) If Allentown (node-id=0) is infected at the beginning of the data set, at which time
does Anchorage (ANC, node-id=41) become infected?

Answer: Node 41 is infected at time:1229290800

Task 2: Effect of infection probability p on spreading

speed

a) Plot the averaged prevalence ρ(t) of the disease (fraction of infected nodes) as a
function of time for each of the infection probabilities. Plot the 5 curves in one
graph.

Answer: The plot is shown in Figure 1

Figure 1: The averaged prevalence ρ(t) of the disease (fraction of infected nodes) as a
function of time for each of the infection probabilities

b) For which infection probabilities does the whole network become fully infected? What
are the stepwise, nearly periodic “steps” in the curves due to?

Answer: Interestingly, only when p=1 will the whole network become fully infected.
These nearly periodic steps may be due to the infection of a hub. If a hub is being
infected, then the spreading speed would be higher, because typically a hub has more
neighbors.



Task 3: Effect of seed node selection on spreading

speed

a) Use nodes with node-ids [0, 4, 41, 100, 200] (ABE, ATL, ACN, HSV, DBQ) as seeds
and p = 0.1, and run the simulation 10 times for each seed node. Then, plot the
average prevalence of the disease separately for each seed node as a function of time.

Answer: The plot is shown in Figure 2

Figure 2: The average prevalence of the disease separately for each seed node as a function
of time

b) You should be able to see differences in these spreading speed. Are these differences
visible in the beginning of the epidemic or only later on? Why?

Answer: These differences are both visible in the beginning of the epidemic and later
on. And actually they are more clear in the beginning since later on in all cases except
for the case of using node 200 as seed node the prevalence all converge to somewhere
around 0.95. A potential explanation is that seed nodes are located in component
that have different connectivity measures, so in the beginning the spreading speeds
will be quite different according to local vulnerability, but later on as the infection
spreads to well-connected components, the spreading speeds would be similar.

c) In the next tasks, we will, amongst other things, inspect the vulnerability of a node
for becoming infected with respect to various network centrality measures. Why is
it important to average the results over different seed nodes?

Answer: As we see in b), selection of different seed nodes can affect a lot the
spreading speed,it’s reasonable to average their effects and reduce the variance. Also
in the sense to control the variates that we are not interested in, it’s important to
average the results over different seed node.



Task 4: Effect of seed node selection on spreading

speed

a) Run the 50 simulations, and create scatter plots showing the median infection time
of each node as a function of the following nodal network measures:
i) unweighted clustering coefficient c
ii) degree k
iii) strength s
iv) unweighted betweenness centrality

Answer: The plot is shown in Figure 3, 4, 5, 6

Figure 3: The median infection time of each node as a function of unweighted clustering
coefficient



Figure 4: The median infection time of each node as a function of degree

Figure 5: The median infection time of each node as a function of strength



Figure 6: The median infection time of each node as a function of unweighted betweenness
centrality

b) Use the Spearman rank-correlation coefficient for finding out, which of the measures
is the best predictor for the infection times.

Answer: The results are shown below:
Spearman rank-correlation coefficient for
unweighted clustering coefficient: -0.1437103985382705
degree: -0.8139948552481321
strength: -0.8783023959285067
unweighted betweenness centrality: -0.6297916390281394

We can see that strength (rho: -0.878) and degree (rho: -0.814) seems to be better
predictors for infection times

c) Discuss your results for each network centrality metric. Especially, explain the rank-
ing of the network measures as measured by the median infection time.

Answer: strength(ρ = −0.878) is a sum of weights of edges adjacent to the edge.
Generally when an edge has a high strength value, it means that this edge is either
in a sub-component with high connectivity or the entry path to a sub-component.
Thus, in this case nodes connected with edges of high strength would certainly be
vulnerable to infection.

degree(ρ = −0.814) is a very similar measure but it is not weighted. It does not
contain so much information as strength and therefore slightly worse than strength.

unweighted cluster coefficient (ρ = −0.144) is the worst because it doesn’t pro-
vide too much information about the node and its neighbors as the previous ones



do.

unweighted betweenness centrality(ρ = −0.630) is a measure of centrality in a
graph based on shortest paths. We can see that this measure is not very good at
predicting infection time. The potential explanation is that the best representation
of the path from one airport to another is likely to be a random walk, it has not neces-
sarily to follow the shortest path to a target airport. Thus, unweighted betweenness
centrality cannot be the best one to predict infection time.

Task 5: Shutting down airports

a) Adapt your code to enable immunization of nodes, and plot the prevalence of the
disease as a function of time for the 8 different immunization strategies (social net.,
random node, and 6 nodal network measures) when 10 nodes are always immunized

Answer: The plot is shown in Figure 7

Figure 7: The prevalence of the disease as a function of time for the 6 different immunization
strategies

b) Discuss the ranking of the immunization strategies. In particular, compare your
immunization results with the results you obtained in the previous task (Task 4).
Are there some measures that are bad at predicting the infection time but important
with regards to immunization? Or vice versa? Why?

Answer: The results are shown in the following table and Figure 8



Infection ratio Spearman rank-correlation coefficient

unweighted betweenness centrality 0.67 -0.63
closeness centrality 0.688 -0.852
strength 0.781 -0.878
k-shell 0.849 -0.825
random neighbour 0.857 N/A
random immunization 0.964 N/A
unweighted clustering coefficient 0.964 -0.144
degree 0.667 -0.814

Figure 8: Comparison between ρ and infection ratio

strength, closeness centrality and degree are the ones that both do good in predicting
infection time and immunization. We’ve already discussed strength and degree in part
c) of task 4.

unweighted betweenness centrality is the one that do bad in predicting infection
time but do well in immunization. Although we’ve said that the airline traffic flows
do not necessarily follow the shortest paths, but measure based on shortest paths
like closeness centrality and unweighted betweenness centrality can still be effective
in immunization because the node with large closeness centrality and unweighted



betweenness centrality can be viewed as the one that has more control over the
network, because more information will pass through that node. In this sense that
node may be the gateway to a large sub-component and thus closing that node can
help immunization.

Interestingly, k-shell is good at predicting the infection time but not so important
with regards to immunization. The reason may be that k-shell is a very good measure
of centrality, but infection will not be affected too much if we close down the central
node. As we just discussed above the key to immunization is to close down gateway
nodes.

c) The pick-a-neighbour immunization strategy probably worked better than the ran-
dom node immunization. Let us try to understand why.
- First, if the degree distribution of the network is P(k), what is the probability of
picking a random node of degree k?
- What is the expected outcome if you then pick a random neighbour of the random
node (hint: see lectures 3 and 4)?
- Consequently, which of the strategies is expected to be more effective and why?

Answer: First, the probability of picking a random node with degree k is exactly
P (k). The probability of pick a random neighbour with degree k of the random node
is P (k) ∗

∑
k kP (k).

Since
∑

k P (k) = 1 and
∑

k kP (k) >
∑

k P (k), we have P (k) ∗
∑

k kP (k) > P (k).
Thus, social network immunization is better since we increase the chances of choosing
a node with a high degree.

d) Although the social network immunization strategy outperforms the random immu-
nization, it is not necessarily as effective as some other immunization strategies (and
there is random variation). Nevertheless, explain shortly, why it still makes sense to
use this strategy in the context of social networks?

Answer: The main reason is its easy implementation because it requires no further
information about the node.

Task 6: Disease transmitting links

a) Run the simulations, and compute the fraction of times that each link is used for
infecting the disease (fij). Then use the provided function plot network USA which
can be found in si animator.py to visualize the network on top of the US map (see
the example code given in the function). Adjust the width of the links according to
the fractions fij to better see the overall structure. Compare your visualization with
the maximal spanning tree of the network.



Answer: The results is shown in Figure 9 and Figure 10.

Figure 9: The network with line width in accordance wit fij

Figure 10: Maximal spanning tree of the network

b) What do you notice? How would you explain your finding?

Answer: We can notice that our plot and the maximal spanning tree are quite
similar. A reasonable explanation is that in maximal spanning tree edges with large
weights are selected, and because edges with larger weights are used more than the
others, which leads to high probability to spread the infection for more times. And
this is exactly what we are trying to calculate and plot using our simulation.



c) Create scatter plots showing fij a function of the following link properties:
i) link weight wij

iii) unweighted link betweenness centrality ebij
Compute also the Spearman correlation coefficients between fij and the two link-wise
measures.

Answer: The Spearman correlation coefficients between fij and weight: 0.4054752528698251
The Spearman correlation coefficients between fij and link betweenness centrality:
0.5563146037032359

d) Explain the performance of the two link properties for predicting fij

Answer: Both 2 measures are not good enough in predicting fij. Link betweenness
has relatively better performance because it is the sum of the fraction of shortest
paths that pass through the node considering all pairs of nodes.

Task 7: Discussion

Even though extremely simplistic, our SI model could readily give some insights on
the spreading of epidemics. Nevertheless, the model is far from an accurate real-world
estimate for epidemic spreading.

Discuss the deficiencies of the current epidemic model by listing at least four (4) ways
how it could be improved to be more realistic.

Answer: We can add a new state for nodes: removed (R) - immune from the pathogen
(via vaccine or post-exposure) or dead, to change SI model into a SIR Epidemic Model to
make it more realistic.

Similarly, we can make the infected individuals return to the susceptible state after
getting infection with some probability. This model is called SIS model and it’s appropriate
for diseases such as common cold (rhinoviruses) that have chronic infections.

To make the model even more realistic, we can construct the SIRS model, which
means that an airport can be susceptible again after getting immune. For example, an
individual’s immunity can wane over time even after recovering from seasonal influenza.
The SIRS model can be used in this case to allow immune individuals to become susceptible
again.

For some diseases, they have a latent phase in which the individual is infected but not
yet infectious. We can add a latent/exposed (E) state in the SIR model and let infected
(but not yet infectious) individuals instead of directly from S to I move from S to E and
from E to I in order to incorporate this delay between getting infected (E) and really being



infectious (I).
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